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In the hydrodynamics of an ideal fluid the shock wave is a geometrical surface dividing 
two thermodynamically equilibrium states of the medium. From the molecular-kinetic point of 
view this discontinuity surface is an approximation of a transition layer, i.e., the shock 
front, in which there occurs the evolution of the velocity distribution of molecules from 
one Maxwellian distribution, corresponding to the gas ahead of the shock wave, to another, 
corresponding to the gas behind the shock wave. The state of the gas in the shock front is 
so very different from the equilibrium state and changes so rapidly that the only admissible 
approach for the description of the phenomenon is the use of the nonlinear Boltzmann equation. 
The solution of this equation, in principle, allows one to obtain detailed information on 
the nonequilibrium distribution function; however, in the study of the motion of a gas across 
the transition layer, attention is focused not on the distribution itself, but on the compu- 
tation of the spatial mean velocities and of the macroscopic quantities (density, mean veloc- 
ity, and temperature). 

The form of the distribution itself (and, in particular, the form of the high-velocity 
tail of the distribution) becomes especially important in the case when quantities with a 
threshold nature of the velocity dependence are being averaged and the threshold lies in the 
range of velocities corresponding to the tail of the distribution. Among such quantities 
are the cross sections of many chemical reactions whose occurrence is associated with the 
surpassing of the activation potential barrier at the expense of the energy of the colliding 
molecules. Therefore, an explanation of the characteristics of the relaxation process in a 
strong shock front may be of help in understanding the role played by this transition region 
in chemical transformations initiated by the shock wave. 

The object of the present work is to study the evolution of the form of the velocity 
distribution of molecules and of the relative velocity distribution of molecule pairs in the 
zone of the shock. 

Such investigations have become feasible only in recent years as a result of intense de- 
velopment of numerical methods [1-3]. 

At present there are two clearly marked directions in this field, which are apparently 
the most promising. 

The first of these is based on computer simulation of the investigated phenomenon and 
statistical computation of the elementary collisionevents in a model gas [4-6]. Among the 
methods using this approach, Bird's method is the best known [5]. Its basic advantages are 
the relatively low level of demands on the computer memory and the absence of constraints on 
the form of the desired solution and of the potential of the intramolecular forces, which 
enable one to investigate the structure of a strong shock wave in a gas consisting of rigid 
spherical molecules and to obtain the distribution functions of the longitudinal and trans- 
verse components of the intrinsic velocities at different points of the wave with Mach num- 
ber M - i0. 

The second direction involves the development of schemes of numerical solution of the 
Boltzmann equation. The main difficulty in its solution, even for one-dimensional stationary 
motion of a gas (for example, the motion of a gas in a plane shock wave), lies in the eval- 
uation of integrals of large multiplicity. The Monte Carlo method [7], developed for this 
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purpose, has been successfully applied to the solution of the problem of shock-wave struc- 
ture [8]. 

Another suitable method is to construct successive approximations, specifically choosing 
the intramolecular potential, the symmetry of the problem, and the initial conditions so that 
a significant reduction in the multiplicity of the integrals will result. 

The use of the method of integral equations [9] in the problem of the shock-wave struc- 
ture in a gas consisting of Maxwellian molecules has offered the possibility of obtaining , 
in the first approximation, an analytic form of the velocity distribution function [i0]. In 
spite of the fact that the convergence of the successive approximations is not proved for 
the general case, it has been confirmed by test numerical solutions, in which the method of 
integral equations is combined with the statistical method of computing the collision inte- 
gral [Ii]. 

In the present work we compare the distribution functions of the absolute velocities of 
the molecules and the relative velocities of molecule pairs in a shock wave with M = 5 com- 
puted by the method of direct simulation [5]. 

We consider a one-dimensional stationary shock wave in an ideal monatomic gas. The dis- 
crete description of the gas is carried out with the use of the distribution function f(x, 
Ux, Uy, u z) = f(x, u), which determines the mean density of the molecules in the phase space 
composed by the spatial coordinate x and the three velocity coordinates Ux, Uy, and u z. It 
is assumed that the gas is in the equilibrium state at infinite distances upstream and down- 
stream; therefore, the distribution function satisfies the asymptotic (boundary) conditions 

/ (--oo,  u) = / l ( u )  = el(hi~g)3~ ~ exp [--hl(u - -  U,) =1, 

f(-~oo, u) ---~/,,(u) ---~ n.,(h.,/y~)3/2 exp [--h~(u - -  U:)2], 
(1) 

where U i = (U i, 0, 0); U~ and U2 are, respectively, the flow velocities ahead of the wave and 
behind it. The conditions in the gas on the two sides of the shock wave are related through 
Rankine--Hugoniot equations, which represent the laws of conservation of mass, momentum, and 
energy: 

h2~1 = i6M2/(M ~ + 3)(5M ~ § l),  n~ln~ = u~/~ = (M 2 + 3)/4M 2, 

where M = (6/5h~)~/2U~ is the Mach number for the shock wave. 

The relative velocity distribution function of the molecule pairs is defined through the 
function f(x, u) in the following way: 

G (x, Ure 1 ) ---- y f (x, u q- v) / (x, u) dudv. 
Ivl=u tel 

It can be verified by direct integration that for Maxwellian distributions fi(u) we have 

Gi (Urel) ---- ni --~ h~ U4elexp -- -~-  Ur2el . 

The method of direct modeling [5] is used for a statistical numerical simulation of the 
Boltzmann equation by computing the motion of several thousand molecules modeling a one-dimen- 
sional stationary shock wave in the gas. The field of the modeled flow is divided into spa- 
tial cells which are much smaller than the scale of the changes in the flow. Boundary condi- 
tions (i) are set up at the ends of the segment [-xo, Xo]. 

At the initial instant of time the molecules with a velocity distribution corresponding 
to the function f~(u) are uniformly distributed over the cells on the segment [-xo, 0]. At 
this instant a mirror-reflecting plane piston whose operating surface is perpendicular to the 
direction of the flow is introduced into the flow and starts moving from the point x = 0 to 
the point x = xo with a velocity U2. The evolution of this system over a time At, which is 
taken small compared to the mean local time between collisions, is divided into two stages. 
In the first stage only the velocities of the molecules in the cells change because of the 
collisions during the time At. In the second stage the displacement of the molecules occurs 
in conformity with the time interval At and their instantaneous velocities. The collisions 
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between the molecules in each cell are treated statistically and the trajectories of the 
molecules in between the collisions are computed accurately. 

The time interval during which the piston reaches the boundary downstream from the cen- 
ter is sufficient for establishing a stationary shock-wave profile. After this, the required 
flow characteristics can be measured. The method gives a numerical solution of the Boltzmann 
equation [12]~ whose accuracy increases with an increase in the time interval At, a decrease 
in the cell dimensions, and an increase in the number of modeled molecules in each cell. 

In the realization of the method adopted by us, the molecular model of elastic spheres 
is used; the length of the cell is equal to the mean free pathof the molecules %: upstream; 
the total number of cells in the segment [--xo, xo] is 30-40; the initial number of molecules 
was put equal to 300-400; and the final number of molecules in the segment [--xo, Xo] is 1500- 
2000. The time At is computed during the operation of the program in the following way. Af- 
ter the termination of the next cycle of m displacements of each of the cells lying to the 
left of the piston, the mean relative velocity of the molecules Ure I is calculated. The mean 
time between collisions t m is obtained by averaging the quantity (~a2nUrel) -~ over all the 
cells to the left of the piston; here a is the diameter of the molecules, and n is the den- 
sity of the molecules in a given cell. The time &t is taken equal to tm/m. The number m is 
usually put equal to 5. The velocities after the collision are computed according to the al- 
gorithm of [4]. In order to reduce the statistical scatter, several measurements of the dis- 
tribution function (usually 4-6) are averaged, the measurements being taken after the piston 
reached point xo at intervals equal to t m. The entire procedure of piston motion is repeated 
up to 20 times. The computations were done on a BESM-6 computer. 

The velocity distribution functions of the molecules f(x, u) at different points of the 
shock wave are compared in Fig. i. The distribution functions are normalized so that f(x, 
u)du = I. The number above each curve denotes the coordinate x/%~ to which the distribution 
function pertains. The minus sign denotes the region in front of the shock wave and the plus 
sign denotes the region behind the wave. The most probable thermal velocity of the molecules 
in the unperturbed flow ahead of the shock wave c~ = (I/h~) ~/2 is taken as the unit of meas- 
urement of the velocity. 

At large distances upstream from the center of the wave (x/%~ =--9.5) the distribution 
is close to the equilibrium Maxwellian distribution. As the wave moves deeper, the distribu- 
tion becomes distorted because of the molecules with small u, which appear during the retard- 
ation of the impinging flow. The probability of appearance of such molecules increases to- 
ward the center of the wave, where the distribution becomes highly nonequilibrium. Behind 
the center, a Maxwellian distribution is established again relatively rapidly. 

It is interesting to note that the local nonequilibrium functions retain the information 
about the flow characteristics upstream and downstream, i.e., the maxima of the distributions, 
while decreasing in magnitude, do not change their position almost up to the center of the 
wave (curves between x/%1 = +9.5 and +0.5 are similar and are omitted in Fig. i). This fact 
is reflected in the bimodal shape of the distribution, similar to the distribution in [13]. 

The nonequilibrium relative velocity distribution function of molecule pairs G(x, Urel) 
is shown in Fig. 2. 

A special feature of its evolution consists of the fact that the distribution retains 
traces of the bimodal nature, which is manifested in the enhanced probability of finding mol- 
ecules with large relative velocities. The ratios G(x, Urel)/G 2 are shown in Fig. 3, which 
illustrates the nature of the departure from equilibrium in the range of moderate and high 
relative velocities. It is evident that the moderate relative velocities manage to change 
from one equilibrium value to another even over a few mean free path lengths, whereas for 
large velocities this requires about i0 lengths. 

The rigid-sphere molecular model used in the computations is a limiting case of the real 
intramolecular potentials. A "softer" intramolecular interaction will apparently increase not 
only the overall width of the wave, but also the saturability of the zone of the shock ~ 
by molecules with high relative velocities. Clearly similar effects should be expected also 
in a mixture of gases having greatly different masses. 

An appreciable saturability of the zone of the shock by molecules with high rela- 
tive velocities would lead to the result that in a shock front propagating in a reacting gas, 
reactions with rates appreciably exceeding those in the heated gas behind the shock wave will 
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occur quite efficiently. This would be particularly pronounced in processes having chain 
(cascade) nature, when even a relatively small transformation depth at the initial instant 
of tlme (initiation) has a strong influence on the characteristics of the entire process. 
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COMPARISON OF TH~ RESULTS OF CLASSICAL DIFFUSION AND QUANTUM 

CALCULATIONS OF VIBRATIONAL--TRANSLATIONAL RELAXATION OF 

DIATOMIC MOLECULES 

M. N. Safaryan and O. V. Skrebkov UDC 539.196.5+536.45 

INTRODUCTION 

Starting with a numerical solution of the diffusion equation from [2], an investigation 
was performed in [i] of the vibrational relaxation of anharmonic oscillators in an inert gas 
medium, the relative effect of anharmonicity on the kinetics Of the distribution function and 
the mean energy was determined, the dependence of the relaxation of the mean energy of the 
system on its deviation from equilibrium at each instant was shown, etc. The question arises 
of how far the results in [i] are applicable to quantum systems, and, more generally, what 
are the limits of applicability of the classical diffusion calculation. A quantitative an- 
swer to this question requires a step-by-step comparison with the corresponding quantum-me- 
chanical calculation. We performsucha comparison in the present paper (cf. [3])~ 

We use the following notation: e, vibrational energy; e=, energy corresponding to the 
. . . . .  & " O i-th vlbratlonal level; f(c, t) dlstrlbutlon function; fi(t), population of i-th level; f 

and f?, equilibrium values at temperature T~ T, temperature of thermostat; To, initial vi- 
brational temperature; ~(t), mean energy; Co, energy at zero time; T:, vibrational relaxa- 
tion time of harmonic oscillators; mo, ~, and D, fundamental frequency, reduced mass, and dis- 
sociation energy of oscillator; N, number of levels of quantum oscillator; to, adiabaticity 
parameter; to = (mo=/U)~[~-k-T, where M is the reduced mass of the oscillator and particles 
of the thermostat, and u is the parameter of the intermolecular interaction potential; F(t), 
force acting on oscillator in a collision; Pik, probability of transition of oscillator from 
i-th to k-th level per unit time; a = D/kT; ao = D/kTo; mik = (i/h) le i -- ekl, T = t/T,; 

= f/fo; ~i = fi/f~; x = e/D; 8 = ~m/kT; 8o =~m/kTo. 

i. Statement of the Problem. Initial Equations. 

It is well known that classical and quantum-mechanical methods of calculation are equiv- 
alent if 

Omax= ~o/~min<<i, (i.I) 

where Tmi n is the smaller of the values of T and To. This condition is sufficient, but it 
may or may not be necessary for the determination of a number of kinetic characteristics. Ac- 
tually, another quantity determining the possibility of applying the classical method of cal- 
culation to quantum systems is the time of the kinetic process. It is known that a Fokker- 
Planck type of equation for an initial distribution function with large spatial derivatives 
does not give a correct description at times which are very short in comparison with the re- 
laxation time, but starting from a certain instant the size of the initial gradient is of no 
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